首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   661篇
  免费   55篇
  国内免费   13篇
测绘学   21篇
大气科学   105篇
地球物理   156篇
地质学   210篇
海洋学   60篇
天文学   108篇
综合类   2篇
自然地理   67篇
  2022年   5篇
  2021年   23篇
  2020年   19篇
  2019年   16篇
  2018年   21篇
  2017年   25篇
  2016年   55篇
  2015年   31篇
  2014年   30篇
  2013年   47篇
  2012年   53篇
  2011年   38篇
  2010年   43篇
  2009年   53篇
  2008年   33篇
  2007年   31篇
  2006年   34篇
  2005年   28篇
  2004年   20篇
  2003年   19篇
  2002年   8篇
  2001年   14篇
  2000年   14篇
  1999年   7篇
  1998年   7篇
  1997年   8篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1990年   1篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   2篇
  1976年   3篇
  1975年   3篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有729条查询结果,搜索用时 31 毫秒
41.
Climatic changes have altered surface water regimes worldwide, and climate projections suggest that such alterations will continue. To inform management decisions, climate projections must be paired with hydrologic models to develop quantitative estimates of watershed scale water regime changes. Such modeling approaches often involve downscaling climate model outputs, which are generally presented at coarse spatial scales. In this study, Coupled Model Intercomparison Project Phase 5 climate model projections were analyzed to determine models representing severe and conservative climate scenarios for the study watershed. Based on temperature and precipitation projections, output from GFDL‐ESM2G (representative concentration pathway 2.6) and MIROC‐ESM (representative concentration pathway 8.5) were selected to represent conservative (ΔC) and severe (ΔS) change scenarios, respectively. Climate data were used as forcing for the soil and water assessment tool to analyze the potential effects of climate change on hydrologic processes in a mixed‐use watershed in central Missouri, USA. Results showed annual streamflow decreases ranging from ?5.9% to ?26.8% and evapotranspiration (ET) increases ranging from +7.2% to +19.4%. During the mid‐21st century, sizeable decreases to summer streamflow were observed under both scenarios, along with large increases of fall, spring, and summer ET under ΔS. During the late 21st century period, large decreases of summer streamflow under both scenarios, and large increases to spring (ΔS), fall (ΔS) and summer (ΔC) ET were observed. This study demonstrated the sensitivity of a Midwestern watershed to future climatic changes utilizing projections from Coupled Model Intercomparison Project Phase 5 models and presented an approach that used multiple climate model outputs to characterize potential watershed scale climate impacts.  相似文献   
42.
There are serious concerns that ocean acidification will combine with the effects of global warming to cause major shifts in marine ecosystems, but there is a lack of field data on the combined ecological effects of these changes due to the difficulty of creating large‐scale, long‐term exposures to elevated CO2 and temperature. Here we report the first coastal transplant experiment designed to investigate the effects of naturally acidified seawater on the rates of net calcification and dissolution of the branched calcitic bryozoan Myriapora truncata (Pallas, 1766). Colonies were transplanted to normal (pH 8.1), high (mean pH 7.66, minimum value 7.33) and extremely high CO2 conditions (mean pH 7.43, minimum value 6.83) at gas vents off Ischia Island (Tyrrhenian Sea, Italy). The net calcification rates of live colonies and the dissolution rates of dead colonies were estimated by weighing after 45 days (May–June 2008) and after 128 days (July–October) to examine the hypothesis that high CO2 levels affect bryozoan growth and survival differently during moderate and warm water conditions. In the first observation period, seawater temperatures ranged from 19 to 24 °C; dead M. truncata colonies dissolved at high CO2 levels (pH 7.66), whereas live specimens maintained the same net calcification rate as those growing at normal pH. In extremely high CO2 conditions (mean pH 7.43), the live bryozoans calcified significantly less than those at normal pH. Therefore, established colonies of M. truncata seem well able to withstand the levels of ocean acidification predicted in the next 200 years, possibly because the soft tissues protect the skeleton from an external decrease in pH. However, during the second period of observation a prolonged period of high seawater temperatures (25–28 °C) halted calcification both in controls and at high CO2, and all transplants died when high temperatures were combined with extremely high CO2 levels. Clearly, attempts to predict the future response of organisms to ocean acidification need to consider the effects of concurrent changes such as the Mediterranean trend for increased summer temperatures in surface waters. Although M. truncata was resilient to short‐term exposure to high levels of ocean acidification at normal temperatures, our field transplants showed that its ability to calcify at higher temperatures was compromised, adding it to the growing list of species now potentially threatened by global warming.  相似文献   
43.
The Powder River Basin (PRB) of Wyoming and Montana contains significant coal and coal bed natural gas (CBNG) resources. CBNG extraction requires the production of large volumes of water, much of which is discharged into existing drainages. Compared to surface waters, the CBNG produced water is high in sodium relative to calcium and magnesium, elevating the sodium adsorption ratio (SAR). To mitigate the possible impact this produced water may have on the quality of surface water used for irrigation, the State of Montana passed water anti‐degradation legislation, which could affect CBNG production in Wyoming. In this study, we sought to determine the proportion of CBNG produced water discharged to tributaries that reaches the Powder River by implementing a four end‐member mixing model within a Bayesian statistical framework. The model accounts for the 87Sr/86Sr, δ13CDIC, [Sr] and [DIC] of CBNG produced water and surface water interacting with the three primary lithologies exposed in the PRB. The model estimates the relative contribution of the end members to the river water, while incorporating uncertainty associated with measurement and process error. Model results confirm that both of the tributaries associated with high CBNG activity are mostly composed of CBNG produced water (70–100%). The model indicates that up to 50% of the Powder River is composed of CBNG produced water downstream from the CBNG tributaries, decreasing with distance by dilution from non‐CBNG impacted tributaries from the point sources to ~10–20% at the Montana border. This amount of CBNG produced water does not significantly affect the SAR or electrical conductivity of the Powder River in Montana. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
44.
The absence of a production rate calibration experiment on Greenland has limited the ability to link 10Be exposure dating chronologies of ice‐margin change to independent records of rapid climate change. We use radiocarbon age control on Holocene glacial features near Jakobshavn Isbræ, western Greenland, to investigate 10Be production rates. The radiocarbon chronology is inconsistent with the 10Be age calculations based on the current globally averaged 10Be production rate calibration data set, but is consistent with the 10Be production rate calibration data set from north‐eastern North America, which includes a calibration site nearby on north‐eastern Baffin Island. Based on the best‐dated feature available from the Jakobshavn Isbræ forefield, we derive a 10Be production rate value of 3.98 ± 0.24 atoms g a?1, using the ‘St’ scaling scheme, which overlaps with recently published reference 10Be production rates. We suggest that these 10Be production rate data, or the very similar data from north‐eastern North America, are used on Greenland. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
45.
Expressions for both the rectilinear and rotational inertial and damping coefficients for a circular monolithic tower of uniform radius are derived. The analysis matches the fluid velocity, derived from potential theory, with the structural velocity in sway. That is, the motions of the tower are assumed to be in a vertical plane. The analysis is then applied to a tower composed of (lumped-mass) elements, where the expressions for the added-mass and damping coefficients are shown to be functions of wave number. The added-mass is shown to be a product of two wave systems: a travelling wave system, which is responsible for the radiation damping, and a standing wave system, called the evanescent system, which is attached to the structure. The added-mass of the evanescent system is negative for small wave numbers, while that of the travelling waves is positive. The negative sign simply means that the inertial force of the evanescent waves is 180° out of phase with that of the travelling system. Furthermore, it is shown that the contributions of the two wave systems to the total added-mass of the structure counteract each other, resulting in a total added-mass which varies gradually with the wave number. Finally, the analysis is applied to an experiment, and results of the analysis and the experiment are found to agree rather well.  相似文献   
46.
For the seven months terminating on 17 August 1980, primary sewage effluent was discharged into Newark Bay. From 22 July to 6 October 1980, we collected physical, chemical and biological data in the Newark Bay estuary from the lower Passaic River to New York Harbor. During the period of maximum discharge, the Passaic River and much of Newark Bay were anoxic or nearly so. Recovery of the Newark Bay water following sewage abatement took approximately 30 days. During most of the study period, a bloom of blue-green algae characterized the ‘Passaic River water’. This water was also characterized by chlorophyll-a values as high as 73 mg m?3. Chlorophyll concentration almost always increased up the bay, along with decreasing salinity, increasing temperature, increasing phosphate-P and decreasing nitrate-N. The decrease in nitrate, however, was associated with an increase in ammonia-N and total N during the period of sewage discharge.  相似文献   
47.
A spatial variant of the basic reproduction number (R0), here defined as the number of subsequent deaths attributed to an initial mortality, can be used to identify geographic variation within an epidemic. A spatial R0 was calculated at the neighborhood level, here defined by a 50‐m buffer surrounding an index case, for mortality data from the 1878 yellow fever epidemic of New Orleans. The highest number of secondary mortalities linked to a neighborhood index case was twelve, with a further eighty‐seven extrapolated morbidity cases. Results also highlight the importance of multideath residences and cultural contacts in neighborhood‐level disease spread.  相似文献   
48.
Having the ability to predict enrollment is an important task for any school’s recruiting team. The purpose of this study was to identify significant factors that can be used to predict the spatial distribution of enrollments. As a case study, we used East Tennessee State University (ETSU) pharmacy school, a regional pharmacy school located in the Appalachian Mountains. Through the application of a negative binomial regression model, we found that the most important indicators of enrollment volume for the ETSU pharmacy school were Euclidean distance, probability (based on competing pharmacy schools’ prestige, driving distance between schools and home and tuition costs), and the natural barrier of the Appalachian Mountains. Using these factors, together with other control variables, we successfully predicted the spatial distribution of enrollments for ETSU pharmacy school. Interestingly, gender also surfaced as a variable for predicting the pharmacy school’s enrollment. We found female students are more sensitive to the geographic proximity of home to school.  相似文献   
49.
The Tibesti massif, one of the most prominent features of the Sahara desert, covers an area of some 100,000 km2. Though largely absent from scientific inquiry for several decades, it is one of the world’s major volcanic provinces, and a key example of continental hot spot volcanism. The intense activity of the TVP began as early as the Oligocene, though the major products that mark its surface date from Lower Miocene to Quaternary (Furon (Geology of Africa. Oliver & Boyd, Edinburgh (trans 1963, orig French 1960), pp 1–377, 1963)); Gourgaud and Vincent (J Volcanol Geotherm Res 129:261–290, 2004). We present here a new and consistent analysis of each of the main components of the Tibesti Volcanic Province (TVP), based on examination of multispectral imagery and digital elevation data acquired from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Our synthesis of these individual surveys shows that the TVP is made up of several shield volcanoes (up to 80 km diameter) with large-scale calderas, extensive lava plateaux and flow fields, widespread tephra deposits, and a highly varied structural relief. We compare morphometric characteristics of the major TVP structures with other hot spot volcanoes (the Hawaiian Islands, the Galápagos Islands, the Canary and Cape Verdes archipelagos, Jebel Marra (western Sudan), and Martian volcanoes), and consider the implications of differing tectonic setting (continental versus oceanic), the thickness and velocity of the lithosphere, the relative sizes of main volcanic features (e.g. summit calderas, steep slopes at summit regions), and the extent and diversity of volcanic features. These comparisons reveal morphologic similarities between volcanism in the Tibesti, the Galápagos, and Western Sudan but also some distinct features of the TVP. Additionally, we find that a relatively haphazard spatial development of the TVP has occurred, with volcanism initially appearing in the Central TVP and subsequently migrating to both the Eastern and Western TVP regions. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   
50.
Volcán Huaynaputina is a group of four vents located at 16°36'S, 70°51'W in southern Peru that produced one of the largest eruptions of historical times when ~11 km3 of magma was erupted during the period 19 February to 6 March 1600. The main eruptive vents are located at 4200 m within an erosion-modified amphitheater of a significantly older stratovolcano. The eruption proceeded in three stages. Stage I was an ~20-h sustained plinian eruption on 19-20 February that produced an extensive dacite pumice fall deposit (magma volume ~2.6 km3). Throughout medial-distal and distal parts of the dispersal area, a fine-grained plinian ashfall unit overlies the pumice fall deposit. This very widespread ash (magma volume ~6.2 km3) has been recognized in Antarctic ice cores. A short period of quiescence allowed local erosion of the uppermost stage-I deposits and was followed by renewed but intermittent explosive activity between 22 and 26 February (stage II). This activity resulted in intercalated pyroclastic flow and pumice fall deposits (~1 km3). The flow deposits are valley confined, whereas associated co-ignimbrite ash fall is found overlying the plinian ash deposit. Following another period of quiescence, vulcanian-type explosions of stage III commenced on 28 February and produced crudely bedded ash, lapilli, and bombs of dense dacite (~1 km3). Activity ceased on 6 March. Compositions erupted are predominantly high-K dacites with a phenocryst assemblage of plagioclase>hornblende>biotite>Fe-Ti oxides-apatite. Major elements are broadly similar in all three stages, but there are a few important differences. Stage-I pumice has less evolved glass compositions (~73% SiO2), lower crystal contents (17-20%), lower density (1.0-1.3 g/cm3), and phase equilibria suggest higher temperature and volatile contents. Stage-II and stage-III juvenile clasts have more evolved glass (~76% SiO2) compositions, higher crystal contents (25-35%), higher densities (up to 2.2 g/cm3), and lower temperature and volatile contents. All juvenile clasts show mineralogical evidence for thermal disequilibrium. Inflections on a plot of log thickness vs area1/2 for the fall deposits suggest that the pumice fall and the plinian ash fall were dispersed under different conditions and may have been derived from different parts of the eruption column system. The ash appears to have been dispersed mainly from the uppermost parts of the umbrella cloud by upper-level winds, whereas the pumice fall may have been derived from the lower parts of the umbrella cloud and vertical part of the eruption column and transported by a lower-altitude wind field. Thickness half distances and clast half distances for the pumice fall deposit suggests a column neutral buoyancy height of 24-32 km and a total column height of 34-46 km. The estimated mass discharge rate for the ~20-h-long stage-I eruption is 2.4᎒8 kg/s and the volumetric discharge rate is ~3.6᎒5 m3/s. The pumice fall deposit has a dispersal index (Hildreth and Drake 1992) of 4.4, and its index of fragmentation is at least 89%, reflecting the dominant volume of fines produced. Of the 11 km3 total volume of dacite magma erupted in 1600, approximately 85% was evacuated during stage 1. The three main vents range in size from ~70 to ~400 m. Alignment of these vents and a late-stage dyke parallel to the NNW-SSE trend defined by older volcanics suggest that the eruption initiated along a fissure that developed along pre-existing weaknesses. During stage I this fissure evolved into a large flared vent, vent 2, with a diameter of approximately 400 m. This vent was active throughout stage II, at the end of which a dome was emplaced within it. During stage III this dome was eviscerated forming the youngest vent in the group, vent 3. A minor extra-amphitheater vent was produced during the final event of the eruptive sequence. Recharge may have induced magma to rise away from a deep zone of magma generation and storage. Subsequently, vesiculation in the rising magma batch, possibly enhanced by interaction with an ancient hydrothermal system, triggered and fueled the sustained Plinian eruption of stage I. A lower volatile content in the stage-II and stage-III magma led to transitional column behavior and pyroclastic flow generation in stage II. Continued magma uprise led to emplacement of a dome which was subsequently destroyed during stage III. No caldera collapse occurred because no shallow magma chamber developed beneath this volcano.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号